Dark field microscopy blood analysis Here's a Quick Way to Know | dark field microscope,dark field microscope manufacturer.
dark field microscopy,dark field microscope,darkfield microscope,darkfield microscopy
We are dark field microscopy,dark field microscope manufacturer.Welcome OEM.

Dark field microscopy blood analysis Here’s a Quick Way to Know

What is Dark field microscopy?

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

dark field microscopy (dark field microscopy) describes microscopy methods, in both light and electron microscopy, which exclude the unscattered beam from the image. As a result, the field around the specimen (i.e., where there is no specimen to scatter the beam) is generally dark.

Light microscopy applications

In optical microscopy, dark-field describes an illumination technique used to enhance the contrast in unstained samples. It works by illuminating the sample with light that will not be collected by the objective lens and thus will not form part of the image. This produces the classic appearance of a dark, almost black, background with bright objects on it.

dark field microscopy blood analysis

The light’s path

The steps are illustrated in the figure where an inverted microscope is used.
Diagram illustrating the light path through a dark-field microscope

Light enters the microscope for illumination of the sample.
A specially sized disc, the patch stop (see figure), blocks some light from the light source, leaving an outer ring of illumination. A wide phase annulus can also be reasonably substituted at low magnification.
The condenser lens focuses the light towards the sample.
The light enters the sample. Most is directly transmitted, while some is scattered from the sample.
The scattered light enters the objective lens, while the directly transmitted light simply misses the lens and is not collected due to a direct-illumination block (see figure).
Only the scattered light goes on to produce the image, while the directly transmitted light is omitted.

Advantages and disadvantages

dark field microscopy is a very simple yet effective technique and well suited for uses involving live and unstained biological samples, such as a smear from a tissue culture or individual, water-borne, single-celled organisms. Considering the simplicity of the setup, the quality of images obtained from this technique is impressive.

The main limitation of dark field microscopy is the low light levels seen in the final image. This means that the sample must be very strongly illuminated, which can cause damage to the sample. dark field microscopy techniques are almost entirely free of artifacts, due to the nature of the process. However, the interpretation of dark-field images must be done with great care, as common dark features of bright-field microscopy images may be invisible, and vice versa.

While the dark-field image may first appear to be a negative of the bright-field image, different effects are visible in each. In bright-field microscopy, features are visible where either a shadow is cast on the surface by the incident light or a part of the surface is less reflective, possibly by the presence of pits or scratches. Raised features that are too smooth to cast shadows will not appear in bright-field images, but the light that reflects off the sides of the feature will be visible in the dark-field images.

Use in computing

dark field microscopy has recently been used in computer mouse pointing devices, in order to allow an optical mouse to work on transparent glass by imaging microscopic flaws and dust on its surface.

dark field microscopy combined with hyperspectral imaging

When coupled to hyperspectral imaging, dark field microscopy becomes a powerful tool for the characterization of nanomaterials embedded in cells. In a recent publication, Patskovsky et al. used this technique to study the attachment of gold nanoparticles (AuNPs) targeting CD44+ cancer cells.

Transmission electron microscope applications

Dark-field studies in transmission electron microscopy play a powerful role in the study of crystals and crystal defects, as well as in the imaging of individual atoms.

Conventional dark-field imaging

Briefly, imaging involves tilting the incident illumination until a diffracted, rather than the incident, beam passes through a small objective aperture in the objective lens back focal plane. Dark-field images, under these conditions, allow one to map the diffracted intensity coming from a single collection of diffracting planes as a function of projected position on the specimen and as a function of specimen tilt.In single-crystal specimens, single-reflection dark-field images of a specimen tilted just off the Bragg condition allow one to “light up” only those lattice defects, like dislocations or precipitates, that bend a single set of lattice planes in their neighborhood. Analysis of intensities in such images may then be used to estimate the amount of that bending. In polycrystalline specimens, on the other hand, dark-field images serve to light up only that subset of crystals that are Bragg-reflecting at a given orientation.

Weak-beam imaging

Weak-beam imaging involves optics similar to conventional dark-field, but use of a diffracted beam harmonic rather than the diffracted beam itself. Much higher resolution of strained regions around defects can be obtained in this way.

Low- and high-angle annular dark-field imaging

Annular dark-field imaging requires one to form images with electrons diffracted into an annular aperture centered on, but not including, the unscattered beam. For large scattering angles in a scanning transmission electron microscope, this is sometimes called Z-contrast imaging because of the enhanced scattering from high-atomic-number atoms.

Digital dark-field analysis

This a mathematical technique intermediate between direct and reciprocal (Fourier-transform) space for exploring images with well-defined periodicities, like electron microscope lattice-fringe images. As with analog dark-field imaging in a transmission electron microscope, it allows one to “light up” those objects in the field of view where periodicities of interest reside. Unlike analog dark-field imaging it may also allow one to map the Fourier-phase of periodicities, and hence phase gradients, which provide quantitative information on vector lattice strain.

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

dark field microscopy APPLICATIONS

• Viewing blood cells (biological dark field microscope, combined with phase contrast)
• Viewing bacteria (biological dark field microscope, often combined with phase contrast)
• Viewing different types of algae (biological dark field microscope)
• Viewing hairline metal fractures (metallurgical dark field microscope)
• Viewing diamonds and other precious stones (gemological microscope or stereo dark field microscope)
• Viewing shrimp or other invertebrates (stereo dark field microscope)

 

 

What is dark field microscopy blood analysis?

You may find it difficult to locate many medical doctors that use this technique. The FDA does not approve of dark field microscopy blood analysis, therefore many doctor’s hands are tied. Viewing a fresh, natural blood sample (a sample not altered with any stains, etc., needed for normal microscopic exams), under the technology of a dark field microscope, will reveal conditions of your blood not normally even considered during the diagnosis of a normal blood test performed in doctor’s office or a lab.

However, an increasing number of health professionals have found that the use of this technique allows inspection of cellular dynamics which as noted above normally escape analysis or diagnosis using orthodox medical tests.

A dark field microscope is a microscope designed to permit diversion of light rays and illumination, from the side, so that details appear light against a dark background; as opposed to light passing straight through the specimen. If bright lights from the microscope pass directly through the specimen, the heat from the light source will kill the red blood cells (RBC)s faster. Also, by diverting the light rays, a greater amount of depth and details can be viewed. (Almost like a three-dimension view).

Dark Field Microscopy thus allows a health professional to evaluate the shapes and other properties of individual blood cells, indicating nutritional conditions which can be adversely affecting a person’s health. The advantage of this analysis over standard blood tests, which detect chemical changes in the blood, is the ability of dark field microscopy to detect nutritional disorders sooner, when the problem is in its infancy stages. By monitoring the blood’s condition, a health professional can assist in “balancing” the blood by giving dietary and lifestyle recommendations which can enhance health.

This microscopic photograph of healthy, powerful blood shows the red blood cells to be round, evenly shaped and freely floating in plasma. The plasma itself is clear with a few fat globules. There are no signs of clotting, bacteria, fungus, disease or stress. This is the kind of blood a healthy person should have flowing through their circulatory system

In darkfield microscopy, one is therefore able to observe “live blood.” Unlike the techniques of electron microscopy, no fixative is used so the picture is one of mobility rather than fixity. With stains and fixatives, the picture reveals a moment in time rather than a continuum.

What one sees in the mobile situation are the usual red blood cells, white blood cells, plasma—and what is floating in the plasma. Microbial activity, undigested food, fungi, and crystals are all apparent as is the capacity of the red blood cells to circulate and the white blood cells to devour morbid matter.

As we know, red blood cells transport oxygen to the tissues of the body. Without oxygen, we are devitalized, and according to some theories, the tissues go into a morbid state in which they can survive on fermentation rather than oxygenation. This is what is referred to as anaerobic and it is believed, by such persons as Nobel laureate Prof. Otto Warburg, that cancer thrives in such oxygen deficient conditions.

With darkfield microscopy, one often sees sees a condition called “rouleau” in which the red blood cells are stacked together as shown below. Some people believe it is because of the stress on the body of poor metabolism and others believe it is due to this as well as pH (acid-alkaline balance), wrong dietary choices or the presence of excessively high levels of free radicals. In any event, it is usually correctable.

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Dark field microscopy blood analysis

Another condition that is often revealed in these tests is one in which the activity of red blood cells is compromised because of infection, bacterial or viral. In some cases, the red blood cells are misshapen or debilitated by parasitic invasion.

In the photograph above, the “rouleau” effect shows that the red blood cells are clumped together and stacked like coins. Rouleau affects proper oxygenation because the red blood cells do not circulate well enough to deliver oxygen where it is needed.

The condition also favors the growth of unhealthy organisms that can survive in a milieu that is less oxygen rich. Fungi, bacteria, and viruses require less oxygen than healthy tissue.

In the case of rouleau, since oxygenation is really critical to well being, the right diet and herbs may alleviate one of the underlying factors that contributes to cancer. However, enzymes, avoidance of the wrong foods, and protocols that address the specific issues of the patient would be expected to be more effective than more random efforts to ward off ill health.

For instance, one may or may not be iron deficient, but one may have room for improvement in diet and digestion as well as perhaps liver and immune function. Detoxification and decongestion can also be helpful.

Typically, a detoxifying herb will also be decongesting and sometimes also somewhat anti-parasitic, but not all herbal alkaloids are the same and not all formulae have the same actions. Therefore consultation with a practitioner who is knowledgeable in the areas that are pertinent is practical and, more importantly, often wise!

If the real problem is infection—and devitalization or cancer are secondary to infection—it is important to address the infection so that the red blood cells can “get back to their primary task,” which, of course, is to deliver oxygen to the tissues.

The idea that cancer is a disease of degeneration has had its fashionable phases and its days of rejection. The issue of whether an abnormal condition could perpetuate itself in a healthy internal environment, what is called “biological terrain” in the literature, is also debated but not resolved.

 

 

 

Have any question, Please enter the form below and click the submit button.


*
*
*
*
0 + 5 = ?
Please enter the answer to the sum & Click Submit to verify your registration.

Related Items