dark field microscopy,dark field microscope,darkfield microscope,darkfield microscopy
We are dark field microscopy,dark field microscope manufacturer.Welcome OEM.

What dark field microscopy principle?

What is Dark Field microscope?

dark field microscopy principle dark field microscopy principle

dark field microscopy of sugar crystals-Dark Field illumination is a technique used to observe unstained samples causing them to appear brightly lit against a dark, almost purely black, background.Pictured right: Highly magnified image of sugar crystals using darkfield microscopy technique,When light hits an object, rays are scattered in all azimuths or directions. The design of the dark field microscope is such that it removes the dispersed light, or zeroth order, so that only the scattered beams hit the sample.The introduction of a condenser and/or stop below the stage ensures that these light rays will hit the specimen at different angles, rather than as a direct light source above/below the object.The result is a “cone of light” where rays are diffracted, reflected and/or refracted off the object, ultimately, allowing you to view a specimen in dark field.

dark field microscopy principle

dark field microscopy

What is darkfield microscope?

what is dark field microscopy and why dark field microscopy

 

 

What is Dark Field Microscopic Blood Analysis?

You may find it difficult to locate many medical doctors that use this technique. The FDA does not approve of dark field microscopic blood analysis, therefore many doctor’s hands are tied. Viewing a fresh, natural blood sample (a sample not altered with any stains, etc., needed for normal microscopic exams), under the technology of a dark field microscope, will reveal conditions of your blood not normally even considered during the diagnosis of a normal blood test performed in doctor’s office or a lab.

However, an increasing number of health professionals have found that the use of this technique allows inspection of cellular dynamics which as noted above normally escape analysis or diagnosis using orthodox medical tests.

A dark field microscope is a microscope designed to permit diversion of light rays and illumination, from the side, so that details appear light against a dark background; as opposed to light passing straight through the specimen. If bright lights from the microscope pass directly through the specimen, the heat from the light source will kill the red blood cells (RBC)s faster. Also, by diverting the light rays, a greater amount of depth and details can be viewed. (Almost like a three-dimension view).

Dark Field Microscopy thus allows a health professional to evaluate the shapes and other properties of individual blood cells, indicating nutritional conditions which can be adversely affecting a person’s health. The advantage of this analysis over standard blood tests, which detect chemical changes in the blood, is the ability of dark field microscopy to detect nutritional disorders sooner, when the problem is in its infancy stages. By monitoring the blood’s condition, a health professional can assist in “balancing” the blood by giving dietary and lifestyle recommendations which can enhance health.

This microscopic photograph of healthy, powerful blood shows the red blood cells to be round, evenly shaped and freely floating in plasma. The plasma itself is clear with a few fat globules. There are no signs of clotting, bacteria, fungus, disease or stress. This is the kind of blood a healthy person should have flowing through their circulatory system

In darkfield microscopy, one is therefore able to observe “live blood.” Unlike the techniques of electron microscopy, no fixative is used so the picture is one of mobility rather than fixity. With stains and fixatives, the picture reveals a moment in time rather than a continuum.

dark field microscopy principle dark field microscopy principle

What one sees in the mobile situation are the usual red blood cells, white blood cells, plasma—and what is floating in the plasma. Microbial activity, undigested food, fungi, and crystals are all apparent as is the capacity of the red blood cells to circulate and the white blood cells to devour morbid matter.

As we know, red blood cells transport oxygen to the tissues of the body. Without oxygen, we are devitalized, and according to some theories, the tissues go into a morbid state in which they can survive on fermentation rather than oxygenation. This is what is referred to as anaerobic and it is believed, by such persons as Nobel laureate Prof. Otto Warburg, that cancer thrives in such oxygen deficient conditions.

With darkfield microscopy, one often sees sees a condition called “rouleau” in which the red blood cells are stacked together as shown below. Some people believe it is because of the stress on the body of poor metabolism and others believe it is due to this as well as pH (acid-alkaline balance), wrong dietary choices or the presence of excessively high levels of free radicals. In any event, it is usually correctable.

Another condition that is often revealed in these tests is one in which the activity of red blood cells is compromised because of infection, bacterial or viral. In some cases, the red blood cells are misshapen or debilitated by parasitic invasion.

In the photograph above, the “rouleau” effect shows that the red blood cells are clumped together and stacked like coins. Rouleau affects proper oxygenation because the red blood cells do not circulate well enough to deliver oxygen where it is needed.

The condition also favors the growth of unhealthy organisms that can survive in a milieu that is less oxygen rich. Fungi, bacteria, and viruses require less oxygen than healthy tissue.

In the case of rouleau, since oxygenation is really critical to well being, the right diet and herbs may alleviate one of the underlying factors that contributes to cancer. However, enzymes, avoidance of the wrong foods, and protocols that address the specific issues of the patient would be expected to be more effective than more random efforts to ward off ill health.

For instance, one may or may not be iron deficient, but one may have room for improvement in diet and digestion as well as perhaps liver and immune function. Detoxification and decongestion can also be helpful.

Typically, a detoxifying herb will also be decongesting and sometimes also somewhat anti-parasitic, but not all herbal alkaloids are the same and not all formulae have the same actions. Therefore consultation with a practitioner who is knowledgeable in the areas that are pertinent is practical and, more importantly, often wise!

If the real problem is infection—and devitalization or cancer are secondary to infection—it is important to address the infection so that the red blood cells can “get back to their primary task,” which, of course, is to deliver oxygen to the tissues.

The idea that cancer is a disease of degeneration has had its fashionable phases and its days of rejection. The issue of whether an abnormal condition could perpetuate itself in a healthy internal environment, what is called “biological terrain” in the literature, is also debated but not resolved.

What is Dark field microscopy Applications ?

Viewing Blood cells.
Viewing bacteria.
Viewing different types of algae.
Viewing hairline metal fractures.
Viewing diamonds and other precious stones.
Viewing shrimp and other vertebrae.
Advantages and Disadvantages of Bright Field Microscopy.
Application of Bright Field Illumination
-This technique is widely used in pathology to
view fixed tissue sections or cell films/smears
-In biological applications, brightfield observation is widely used for stained or naturally pigmented or highly contrasted specimens mounted on a glass microscope slide.

 

What dark field microscopy principle?

 

Microscopes are used to magnify objects. Through magnification, an image is made to appear larger than the original object. The magnification of an object can be calculated roughly by multiplying the magnification of the objective lens times the magnification of the ocular lens. Objects are magnified to be able to see small details. There is no limit to the magnification that can be achieved; however, there is a magnification beyond which detail does not become clearer. The result is called empty magnification when objects are made bigger but their details do not become clearer. Therefore, not only magnification but resolution is important to the quality of the information in an image.

The resolving power of the microscope is defined as the ability to distinguish two points apart from each other. The resolution of a microscope is dependent on a number of factors in its construction. There is also an inherent theoretical limit to resolution imposed by the wavelength of visible light (400-600nm). The theoretical limit of resolution (the smallest distance able to be seen between two points) is calculated as:

Resolution = 0.61 l/N.A.

where l represents the wavelength of light used and N.A.is the numerical aperture. The student-grade microscopes generally have much lower resolution than the theoretical limit because of lower quality lenses and illumination systems.

Standard brightfield microscopy relies upon light from the lamp source being gathered by the substage condenser and shaped into a cone whose apex is focused at the plane of the specimen. Specimens are seen because of their ability to change the speed and the path of the light passing through them. This ability is dependent upon the refractive index and the opacity of the specimen. To see a specimen in a brightfield microscope, the light rays passing through it must be changed sufficiently to be able to interfere with each other which produces contrast (differences in light intensities) and, thereby, build an image. If the specimen has a refractive index too similar to the surrounding medium between the microscope stage and the objective lens, it will not be seen. To visualize biological materials well, the materials must have this inherent contrast caused by the proper refractive indices or be artificially stained. These limitations require instructors to find naturally high contrast materials or to enhance contrast by staining them which often requires killing them. Adequately visualizing transparent living materials or thin unstained specimens is not possible with a brightfield microscope.

Darkfield microscopy relies on a different illumination system. Rather than illuminating the sample with a filled cone of light, the condenser is designed to form a hollow cone of light. The light at the apex of the cone is focused at the plane of the specimen; as this light moves past the specimen plane it spreads again into a hollow cone. The objective lens sits in the dark hollow of this cone; although the light travels around and past the objective lens, no rays enter it (Fig. 1). The entire field appears dark when there is no sample on the microscope stage; thus the name darkfield microscopy. When a sample is on the stage, the light at the apex of the cone strikes it. The image is made only by those rays scattered by the sample and captured in the objective lens (note the rays scattered by the specimen in Figure 1). The image appears bright against the dark background. This situation can be compared to the glittery appearance of dust particles in a dark room illuminated by strong shafts of light coming in through a side window. The dust particles are very small, but are easily seen when they scatter the light rays. This is the working principle of darkfield microscopy and explains how the image of low contrast material is created: an object will be seen against a dark background if it scatters light which is captured with the proper device such as an objective lens.

The highest quality darkfield microscopes are equipped with specialized costly condensers constructed only for darkfield application. This darkfield effect can be achieved in a brightfield microscope, however, by the addition of a simple “stop”. The stop is a piece of opaque material placed below the substage condenser; it blocks out the center of the beam of light coming from the base of the microscope and forms the hollow cone of light needed for darkfield illumination.

 

 

 

Related Items